

EEE- 3104

Digital Electronics

Digital Electronics-I Sessional

Page 2 of 83

AHSANULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY

DEPARTMENT

OF

ELECTRICAL AND ELECTRONIC ENGINEERING

EEE- 3104

 Digital Electronics-1 Lab

Edition 2020

Digital Electronics-I Sessional

Page 3 of 83

Table of Contents

Table of Contents ... 3

Experiment: 1 ... 4

Experiment: 2 ...11

Experiment: 3 ...15

Software: Quartus ..20

Experiment: 4 ...40

Experiment: 5 ...45

Experiment: 6 ...51

Experiment: 7 ...57

Experiment: 8 ...62

ANNEXURE I ...71

ANNEXURE II ..75

ANNEXURE III ...81

REFERENCE ...83

Digital Electronics-I Sessional

Page 4 of 83

Experiment: 1

Experiment name: Introduction to different digital ICs.

Introduction:

In this experiment you will be introduced to different digital ICs that will be used in this digital

lab to perform different functions and also the function of each IC. You are asked to memorize

the followings associated with each IC.

1. IC number

2. IC name

3. Total number of pins

4. ccV pin number

5. Ground pin number

IC number IC name Schematic view

7404

NOT/INVERTER

7404

1 2

7408

AND

7408

1

2
3

7432

OR

7432

1

2
3

7400

NAND

7400

1

2
3

7402

NOR

7402

2

3
1

7486

XOR

7486

1

2
3

Digital Electronics-I Sessional

Page 5 of 83

The INVERTER/NOT Gate

The output of an inverter is always the complement (opposite) of the input.

The AND Gate

The output of an AND gate is HIGH only when all inputs are HIGH.

Truth table

0 = LOW

1 = HIGH

Boolean expression

Truth table

0 = LOW

1 = HIGH Boolean expression

3 Input AND Gate

Pulsed Waveforms

B A X

0 0 0

0 1 0

1 0 0

1 1 1

Digital Electronics-I Sessional

Page 6 of 83

The OR Gate

The output of an OR gate is HIGH whenever one or more inputs are HIGH.

The NAND Gate

Truth table

0 = LOW

1 = HIGH

Boolean expression

3 Input OR Gate

Pulsed Waveforms

B A X

0 0 0

0 1 1

1 0 1

1 1 1

Digital Electronics-I Sessional

Page 7 of 83

The output of a NAND gate is HIGH whenever one or more inputs are LOW.

The NOR Gate

Truth table

0 = LOW

1 = HIGH

Boolean expression

3 Input NAND Gate

Pulsed Waveforms

B A X

0 0 1

0 1 1

1 0 1

1 1 0

Digital Electronics-I Sessional

Page 8 of 83

The output of a NOR gate is LOW whenever one or more inputs are HIGH.

Exclusive-OR Gate

Truth table

0 = LOW

1 = HIGH

Boolean expression

Boolean expression

Truth table

0 = LOW

1 = HIGH

3 Input NOR Gate

Pulsed Waveforms

B A X

0 0 0

0 1 1

1 0 1

1 1 0

B A X

0 0 1

0 1 0

1 0 0

1 1 0

Digital Electronics-I Sessional

Page 9 of 83

The output of an XOR gate is HIGH whenever the two inputs are different.

Equipment:
1. Trainer Board

2. IC 7400,7402,7404,7408,7432,7486

3. Microprocessor Data handbook

Procedure:
1. Take any of the following ICs. From microprocessor data handbook find the name of the IC,

total number of pins that it has, ccV pin and ground pin.

IC

Number

IC name Total number

of pin
ccV pin

no.

Ground pin

no.

7400 NAND 14 14 7

7402 NOR 14 14 7

7404 NOT 14 14 7

7408 AND 14 14 7

7432 OR 14 14 7

7486 XOR 14 14 7

Pulsed Waveforms

Digital Electronics-I Sessional

Page 10 of 83

2

9

7404

1 2

1 4

U9A

7404

1 2

7404

1 2

12 810

6

7404

1 2

11

5

14 13

7404

1 2

3 7

7404

1 2

814

63

7408

1

2
3

1

12

7408

1

2
3

13 1011

52 74

9

7408

1

2
3

7408

1

2
3

814

631

12

7432

1

2
3

13 1011

5

7432

1

2
3

2 7

7432

1

2
3

7432

1

2
3

4

9

814

7400

1

2
3

63

7400

1

2
3

7400

1

2
3

1

12

7400

1

2
3

13 1011

52 74

9

12 9

7402

2

3
1

31 64

101113

7402

2

3
1

72

8

7402

2

3
1

14

5

7402

2

3
1

814

63

7486

1

2
3

1

1213

7486

1

2
3

1011

52 7

7486

1

2
3

7486

1

2
3

4

9

 2. Note the number of gates each IC has from the handbook.

3. Now fill up the following table:

Input

A

Input

B

7400

NOT

AY =

7432

OR

BAY +=

7402

NOR

BAY +=

7486

XOR

BAY =

7408

AND

ABY =

7400

NAND

ABY =

0 0

0 1

1 0

1 1

4. Now verify the observed output with the desired output for different combination of inputs.

5. Repeat step 1 to 4 for different ICs.

Report:
1. How can you make a three input AND/OR/XOR gate with a two input AND/OR/XOR

gate?

2. Is it possible to make a three input NAND/NOR gate with a two input NAND/NOR gate?

Justify your answer.

Digital Electronics-I Sessional

Page 11 of 83

Experiment: 2

Experiment name: Introduction to Combinational logic and K map minimization.

Introduction:
Logic design basically means the construction of appropriate function, presented in Boolean

algebraic form, then edification of the logic diagram, and finally choosing of available ICs and

implementing the IC connection so that the logic intended is achieved. The efficiency in

simplifying the algebra leads to less complicated logic diagram, which in the end leads to easier

IC selection and easier circuit implementation.

Caution:
1. Remember to properly identify the pin numbers so that no accidents occur.

2. Properly bias the ICs appropriate voltages to appropriate pins.

Equipment:
1. Trainer Board

2. IC 7400,7402,7404,7408,7432,7486

3. Microprocessor Data handbook

Job 1:

Implement of function CACBABf ++=

CBAABCCBACABCABABC +++++=

CBACBACABABC +++=

7 6 2 5

(2,5,6,7)

m m m m

m

= + + +

=

Truth Table

Row

no.

Input Output

A B C f

0 0 0 0 0
1 0 0 1 0
2 0 1 0 1
3 0 1 1 0
4 1 0 0 0
5 1 0 1 1
6 1 1 0 1
7 1 1 1 1

Digital Electronics-I Sessional

Page 12 of 83

f

K-Map

 BC

A

00 01 11 10

0 0 0 0 1

1 0 1 1 1

SOP:F AC BC= + ()

()()

POS: F B C A C

F B C A C

F B C A C

 = +

 = +

 = + +

Procedure:
1. Draw logic diagram to implement the function.

2. Select ICs from the equipment list.

3. Note the output logic for all combination of inputs.

4. Repeat step-1, 2 and 3 for SOP and POS function.

Figure 2.1: Logic Diagram of Job 1

AC BC’

Digital Electronics-I Sessional

Page 13 of 83

Job 2:

 Implement of function () () ()f AB B C A AC B= + + +

Now,

() () ()

() () () ()

() () ()

() () ()

() () ()

() ()

() ()

()()()()()()()()

() () ()

(1)

()

() ()

() ()

() ()

f AB B C A AC B

B A A B A C A B B C

B A B A C B C

B AA A B A C B C

A B A B A B A C B C

A B A B A C B C

A B CC A B CC A C BB B C AA

A B C A B C A B C A B C A B C A B C A B C A B C

A B C A B C A B C A

= + + +

= + + + + +

= + + +

= + + + +

= + + + + +

= + + + +

 = + + + + + + + +

 = + + + + + + + + + + + + + + + +

 = + + + + + + () ()

0 1 4 2 5

(0,1,2,4,5)

B C A B C

M M M M M

M

 + + + +

=

=

Truth Table

Row

no.

Input Output

A B C f

0 0 0 0 0
1 0 0 1 0
2 0 1 0 0
3 0 1 1 1
4 1 0 0 0
5 1 0 1 0
6 1 1 0 1
7 1 1 1 1

Distributive Law

 x + yz = (x + y) (x + z)

Digital Electronics-I Sessional

Page 14 of 83

K-MAP

 BC

A

00 01 11 10

0 0 0 1 0

1 0 0 1 1

SOP:F AB BC= + ()

POS: F B A C

F B A C

 = +

 = +

Procedure:
1. Simplify the function in POS form and in SOP form by using Boolean algebra.

2. Draw logic diagram to implement the function.

3. Select ICs from the equipment list.

4. Note the output logic for all combination of inputs.

7432

1

2
3

7408

1

2
3

AB+B

7432

9

10
8

B

7408

9

10
8

7408

4

5
6 f

C A

AC+B

A+C

7432

4

5
6

7408

12

13
11

BC AB

Figure 2.2: Logic Diagram of Job 2

Digital Electronics-I Sessional

Page 15 of 83

Experiment: 3

Experiment name: Construction of adders, sub tractors, using basic logic gates.

Introduction:
Adders and sub tractors are the basic operational units of simple digital arithmetic operations. In

this experiment, the students will construct the basic adder and sub tractor circuit with common

logic gates and test their operability. Then in the last job, they will cascade adder ICs to get

higher bit adders.

Binary Adder

Among the basic functions encountered are the various arithmetic operations. The most basic

arithmetic operation, is the addition of two binary digits. This simple addition consists of four

possible elementary operations, namely, 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, and 1 + 1 = 10. The first

three operations produce a sum whose length is one digit, but when both augend and addend bits

are equal to 1, the binary sum consists of two digits. The higher significant bit of this result is

called a carry. When the augend and addend numbers contain more significant digits, the carry

obtained from the addition of two bits is added to the next higher-order pair of significant bits. A

combinational circuit that performs the addition of two bits is called a half-adder. One that

performs the addition of three bits (two significant bits and a previous carry) is full-adder.

Half Adder

From the basic understanding of a half-adder, we find that the circuit needs two binary inputs

and two binary outputs. The input variables designate the augend and addend bits; the output

variables produce the sum and carry. It is necessary to specify two output variables because the

result may consist of two binary digits. We arbitrarily assign symbols x and y to the two inputs

and S (for sum) and C (for carry) to the outputs.

Now that we have established the number and names of the input and output variables, we are

ready to formulate a truth table to identify exactly the function of the half-adder. This truth table

is
x y C S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

The carry output is 0 unless both inputs are 1. The S output represents the least significant bit of

the sum.

The simplified Boolean functions for the two outputs can be obtained directly from the truth

table. The simplified sum of products expressions are

xyC

yxyxyxS

=

=+=

The logic diagram for this implementation is shown below

Digital Electronics-I Sessional

Page 16 of 83

Fig 3.1. Half-adder

Full Adder

A full-adder is a combinational circuit that forms the arithmetic sum of three input bits. It

consists of three inputs and two outputs. Two of the input variables, denoted by x and y,

represent the two significant bits to be added. The third input, z, represents the carry from the

previous lower significant position. Two outputs are necessary because the arithmetic sum of

three binary digits ranges in value from 0 to 3, and binary 2 or 3 needs two digits. The two

outputs are designated by the symbols S for sum and C for carry. The binary variable S gives the

value of the least significant bit of the sum. The binary variable Cr gives the output carry. The

truth table of the full-adder is
x y z C S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

The eight rows under the input variables designate all possible combinations of 1's and 0's that

these variables may have. The 1's and 0's for the output variables are determined from the

arithmetic sum of the input bits. When all input bits are 0's, the output is 0. The S output is equal

to 1 when only one input is equal to 1 or when all three inputs are equal to 1. The C output has a

carry of 1 if two or three inputs are equal to 1. Physically, the binary signals of the input wires

are considered binary digits added arithmetically to form a two-digit sum at the output wires. On

the other hand, the same binary values are considered variables of Boolean functions when

expressed in the truth table or when the circuit is implemented with logic gates. It is important to

realize that two different interpretations are given to the values of the bits encountered in this

circuit. The input-output logical relationship of the full-adder circuit may be expressed in two

Digital Electronics-I Sessional

Page 17 of 83

Boolean functions, one for each output variable. This implementation uses the following Boolean

expressions:

zyxyxzyxzxyyxzyxyxzxyzzyxzyxzyxS =+=+++=+++=)()()()(

yzzyxxxyzzyzyxxyzzxyzyxyzxC +=+++=+++=)()()(

The logic diagram for the full-adder implemented in sum of products is shown in Fig. 2.2

Half Subtractor

A half-subtractor is a combinational circuit that subtracts two bits and produces their difference.

It also has an output to specify if a 1 has been borrowed. Designate the minuend bit by X and the

subtrahend bit by y. To perform x - y, we have to check the relative magnitudes of x and y. If x '3

y, we have three possibilities: 0 - 0 = 0,

1 - 0 = 1, and 1 - 1 = O. The result is called the difference bit. If x < y, we have 0 - 1, and it is

necessary to borrow a 1 from the next higher stage. The 1 borrowed from the next higher stage

adds 2 to the minuend bit, just as in the decimal system a borrow adds 10 to a minuend digit.

With the minuend equal to 2, the difference becomes

2 - 1 = 1. The half-subtractor needs two outputs. One output generates the difference and will be

designated by the symbol D. The second output, designated B for borrow, generates the binary

signal that informs the next stage that a 1 has been borrowed.

The truth table for the input-output relationships of a half-subtractor can now be derived as

follows:

x y B D
0 0 0 0

0 1 1 1

1 0 0 1

1 1 0 0

Fig 3.2. Full-adder

Digital Electronics-I Sessional

Page 18 of 83

The Boolean functions for the two outputs of the half-subtractor are derived directly from the

truth table:

yxB

yxyxyxD

=

=+=

It is interesting to note that the logic for D is exactly the same as the logic for output S in the

half-adder.

Fig 3.3. Half-subtractor

Full Subtractor

A full-subtractor is a combinational circuit that performs a subtraction between two bits, taking

into account that a 1 may have been borrowed by a lower significant stage. This circuit has three

inputs and two outputs. The three inputs, x, y, and z, denote the minuend, subtrahend, and

previous borrow, respectively. The two outputs, D and B, represent the difference and output

borrow, respectively. The truth table for the circuit is

x y z B D

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 1 0

1 0 0 0 1

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

zyxzyxzyxyzzyxzyzyxxyzzyxzyxzyxD =+=+++=+++=)()()()(

yzzyxxxyzzyzyxxyzyzxzyxzyxB +=+++=+++=)()()(

Digital Electronics-I Sessional

Page 19 of 83

Fig 3.4. Full-subtractor

Caution:
1. Remember to properly identify the pin numbers so that no accidents occur.

2. Properly bias the ICs with appropriate pins.

Equipment:
1. Trainer Board

2. IC 7400,7402,7404,7408,7432,7486

3. Microprocessor Data handbook

Procedure:
1. Fill up the truth table for a half adder

2. Verify the Boolean function for a half adder.

3. Construct the logic diagram from the Boolean functions.

4. Select the ICs from the equipment list.

5. Implement the output logic.

6. Repeat the whole procedure for half a subtractor.

7. Fill up the truth table for a full adder.

8. Verify the Boolean function for a full adder.

9. Construct the logic diagram from the Boolean functions.

10. Select the ICs from the equipment list.

11. Implement the output logic.

12. Repeat the whole procedure for a full sub tractor.

Report
1. Design a full adder using two half adder block and basic gates.

7408

4

5
6

x

B

D

BC

y z

7486

1

2
3

7408

1

2
3

7432

1

2
3

7404
1 2

7486

4

5
6

Digital Electronics-I Sessional

Page 20 of 83

Software: Quartus

Experiment name: Introduction to FPGA

Equipment:
Altera DE 2 FPGA Development Board

Procedure:
For installation procedure, go to Annexure I.

Creating a New Project in Quartus II (Steps 1-6):

1. Open Quartus II 9.0 sp1 web edition.

2. Go to File→New Project Wizard. The following window will open up:

Digital Electronics-I Sessional

Page 21 of 83

3. Click Next.

4. In the next window that appears, change the default working directory to your working

directory (e.g. E:\130205001) and give a name to this project (space in the name is not

allowed). Your top-level block diagram file, vector waveform files, etc. should have the

same name as the name of the project.

5. In the next window, you may include files to your project, which we will demonstrate later,

for now, click Next.

6. In the following window, select Cyclone II under Device family and EP2C35F672C6under

Available devices. Click Finish. This completes the steps for creating a project file.

Digital Electronics-I Sessional

Page 22 of 83

Creating a Block Diagram/Schematic file in Quartus II:

7. Go to File→New. Select Block Diagram/Schematic File and click OK.

A blank block diagram window will appear.

Digital Electronics-I Sessional

Page 23 of 83

8. To implement half-adder, we will need an AND gate and an XOR gate. From the left menu

bar, click on icon for Symbol Tool, or alternatively double clock on the blank schematic

window.

9. The following window will appear. Under Libraries, click on the plus icon beside

c:/altera/…

10. After expanding the plus icon, you will see the following library directories:

Digital Electronics-I Sessional

Page 24 of 83

11. Click on the plus sign beside primitives.

12. Gate functions (AND, OR, XOR etc.) are under logic directory, input and output pins are

under pin directory, and flip-flops are under storage directory. Go to logic directory and select

and2 from the list for a 2-input AND gate and click OK.

13. Then go to block diagram window and place the symbol on it.

14. Do the same for the XOR gate.

Digital Electronics-I Sessional

Page 25 of 83

15. Now, go to pin directory and select input/output for input/output pins and place them on the

schematic.

16. You can click on the pin names and rename them.

Digital Electronics-I Sessional

Page 26 of 83

17. Now, in the block diagram window, move cursor to input/output pins on gates and you will

see wiring icon showing up, or you can select Orthogonal Node Tool from the left menu bar.

18. Now, wire the gates and pins to construct a half-adder circuit. When completed, it should

look something like the following:

19. Click on start compilation button on the top menu bar.

20. Click Yes, if you are prompted to save the block diagram.

21. File name of top-level design entity must be the same as that of the project name (e.g. half-

adder in this case). Click Save.

Digital Electronics-I Sessional

Page 27 of 83

22. If compilation is successful, you will get a message like the following. Click OK.

23. Ignore warnings for now. Compilation report-flow summary will present you with the

details:

Digital Electronics-I Sessional

Page 28 of 83

If any error occurs, you will find them at the bottom window.

In case an error occurs, find the error on the block diagram and rerun compilation.

Running Simulation of Schematic file in Quartus II:

24. Go to File→New to create a vector waveform file which is required for simulating inputs and

outputs. Select Vector Waveform File and click OK.

25. The following window will open up.

Digital Electronics-I Sessional

Page 29 of 83

26. Double click on the white space under ‘Name|Value at 16.5 ns’. Or Right click on that space

and select Insert→Insert Node or Bus.

27. In the Insert Node or Bus window, click Node Finder.

28. In the Node Finder window, Click List. Make sure Pins:all is selected under Filter.

29. Now the window will look like the following. Click on the ‘>>’ button.

Digital Electronics-I Sessional

Page 30 of 83

30. Now, it should appear like the following. Click OK.

31. In the following window, click OK.

Digital Electronics-I Sessional

Page 31 of 83

32. The vector waveform file will now look like the following:

Now, you can clearly see the inputs and outputs.

33. Select an input and from the left palette, click on the Overwrite Clock icon.

34. In the Clock window, set parameters of the clock. Only change the Period and keep

everything else the same as before. Double clock period as you move from one input (LSB) to

another as this will enable you to simulate the circuit for all possible input signal conditions.

Digital Electronics-I Sessional

Page 32 of 83

35. Now, after setting all the input clocks, Vector Waveform File will look like the following:

36. Save the Vector Waveform File. It must have the same name as the Block Diagram/

Schematic file.

37. Click on the blue play button and you should observe the simulated waveforms.

Digital Electronics-I Sessional

Page 33 of 83

Note there is a delay between input and outputs which simulates the real effect of gate delays. If

you are interested in only functional analysis rather than timing analysis, go through some more

steps.

38. Go to Processing→Simulator Tool.

In the following window, Select Functional as Simulation Mode and click on Generate

Functional Simulation Netlist.

39. After generating functional simulation netlist, the following window will appear. Click OK.

40. Click on the blue play button and you should observe the following message.

Digital Electronics-I Sessional

Page 34 of 83

41. Go to Simulation Report window and observe the simulation waveforms, and note that there

is no time delay between inputs and outputs and the behavior of the circuit is indeed that of a

half-adder.

Programming FPGA in JTAG mode:

42. To load the program on to the FPGA board, go to Assignments→Pins.

We will be using toggle switches (SW1 for A and SW0 for B) for inputs and LEDs (LED1 for

CARRY and LED0 for SUM) for outputs. Note that, unless you compile the code once before

assigning pins, the inputs and outputs will not appear in this window.

Digital Electronics-I Sessional

Page 35 of 83

43. Assign the pins as follows. Click on Location and type in the pin name.

44. Close the window. Note that, now you will have to compile the code again. So go to start

compilation.

45. After successful compilation, go to Tools→Programmer.

46. Select Hardware Setup. In the Hardware Setup window, select USB-Blaster(USB-0) and

click Close.

Digital Electronics-I Sessional

Page 36 of 83

47. Now put a tick mark under Program/Configure, if it is not already checked. Make sure that

RUN/PROG switch is in RUN position for JTAG mode programming and click Start.

48. You should see the progress bar moving and going to 100% if loading is successful.

Also note that, if an error occurs, it can be found in the message window:

Digital Electronics-I Sessional

Page 37 of 83

49. After loading .sof file successfully, check the functionality of the circuit the FPGA board.

Digital Electronics-I Sessional

Page 38 of 83

Creating a Symbol from a Block Diagram/Schematic File and Using it for

Hierarchical Design:

1. To create symbol of half-adder, go to File→Create/Update→Create Symbol Files for

Current File. Symbol will be created and saved in the project directory for half-adder.

2. Create a new project for full-adder using half-adder in a different directory.

3. Click on browse icon in Add Files window.

4. Select the .bdf file of half-adder. Click Add. That file will be added to the project.

5. The rest of the steps of creating a project are like that for half-adder. Follow those steps.

6. After creating the project, go to File→New and select Block Diagram/Schematic file.

7. Open Symbol Tool. Click on Browse icon. Show the path for symbol file (.bsf) of half-adder.

Digital Electronics-I Sessional

Page 39 of 83

8. After placing the symbols, wire them. The final block diagram should look as follows:

VCC
A INPUT

VCC
B INPUT

VCC
C INPUT

SUMOUTPUT

CARRYOUTPUT

OR2

inst5

A

B

SUM

CARRY

halfadder

inst

A

B

SUM

CARRY

halfadder

inst1

9. Now, save the schematic and follow all the steps you have completed for half-adder. You may

assign pins for full-adder as follows:

Digital Electronics-I Sessional

Page 40 of 83

Experiment: 4

Experiment name: Design a Combinational circuit that will act as an Adder if control
bit is ‘0’ and as a sub tractor if control bit is ‘1’.

Introduction:
Addition of two 4-bit binary numbers can be easily done using a 4-bit binary adder IC

(7483/74283).

Taking the 2’s complement of the subtrahend and then adding that with the minuend can do

subtraction of two 4-bit binary numbers.

Subtraction with Complements
The direct method of subtraction, we borrow a 1 from a higher significant position when the

minuend digit is smaller than the subtrahend digit. This seems to be easiest when people perform

subtraction with paper and pencil. When subtraction is implemented with digital hardware, this

method is found to be less efficient than the method that uses complements. For more details on

complements of a number see Annexure III.

The subtraction of two n-digit unsigned numbers M -N in base r can be done as follows:

1. Add the minuend M to the r's complement of the subtrahend N. This performs

M + (rn - N) = M - N + rn.

2. If M ≥N, the sum will produce an end carry, rn, which is discarded; what is left is the result

(M-N).

3. If M < N, the sum does not produce an end carry and is equal to rn- (N -M), which is the r's

complement of (N-M). To obtain the answer in a familiar form, take the r's complement of the

sum and place a negative sign in front.

Examples

Subtraction between two binary numbers

Let two binary numbers X=1100 and Y=0110, find out (a) X-Y and (b) Y-X

(a)

(b)

X = 1100

2’s complement of Y = + 1010

Sum = 10110

Discard end Carry 24 = - 10000

Answer = 0110

Y = 0110

2’s complement of X = + 0100

Sum = 1010

There is No end Carry.

 So, Y-X = - (2’s complement of 1010) = - 0110

Digital Electronics-I Sessional

Page 41 of 83

Special Use of XOR Gate

If there are 2 inputs A and B and output X in an XOR gate then the truth table will be

A B X

0 0 0

0 1 1

1 0 1

1 1 0

The output of an XOR gate is HIGH whenever the two inputs are different.

XOR Gate as Inverter

If one of the input, A is always 1(High) then the truth table will be like

So from here we can see that the output X will be inverted version of B.

So, BX = ; if A=1.

XOR Gate as Buffer

If one of the inputs, A is always 0 (LOW) then the truth table will be like

So from here we can see that the output X will be same as B.

So, BX = ; if A=0.

Caution:
1. Remember to properly identify the pin numbers so that no accidents occur.

2. Properly bias the ICs with appropriate voltages to appropriate pins.

Equipment:
1. Trainer Board

2. IC 74283,7408,7432,7486.

3. Microprocessor Data handbook

Procedure:
1. Draw the logic diagram to implement the task.

2. Select the required ICs.

A B X

1 0 1

1 1 0

A B X

0 0 0

0 1 1

Digital Electronics-I Sessional

Page 42 of 83

3. Record the outputs for different (a representative sample of) inputs in the following table:

Input Output (S)

A B M SC S4 S3 S2 S1

0001 0010 0 (+)

0001 0010 1 (–)

1001 0011 0 (+)

1011 0111 1 (–)

1011 0111 0 (+)

1100 1001 1 (–)

1111 1111 0 (+)

1111 1111 1 (–)

Figure 4.1: Logic diagram of the Combinational Circuit

Digital Electronics-I Sessional

Page 43 of 83

Procedure for FPGA

1. Follows steps mentioned in ‘Creating a new project in Quartus II’ from Experiment 3 to

create a new project.

2. Follow steps mentioned in ‘Creating a Block Diagram/Schematic file in Quartus II’ from

Experiment 3 to create a new schematic.

3. Under library directories, type 74283 under name and IC 74283 will appear. Place it on

schematic.

4. Place all other components in the same manner, and connect those using wires and add

input/output pins. Components required are: gnd, input, output, 7402, 7486, and 74283.

Digital Electronics-I Sessional

Page 44 of 83

5. Now compile the schematic file and run a simulation using vector waveform file. After

successful simulation, assign pins and then program FPGA in JTAG mode following steps

mentioned in Experiment 3. Assign pins as follows:

INPUT OUTPUT

Signal Switch No. Pin No. Signal LED No. Pin No.

M SW8 PIN_B13 S1 LEDR0 PIN_AE23

A1 SW4 PIN_AF14 S2 LEDR1 PIN_AF23

A2 SW5 PIN_AD13 S3 LEDR2 PIN_AB21

A3 SW6 PIN_AC13 S4 LEDR3 PIN_AC22

A4 SW7 PIN_C13 SC LEDR4 PIN_AD22

B1 SW0 PIN_N25

B2 SW1 PIN_N26

B3 SW2 PIN_P25

B4 SW3 PIN_AE14

6. Verify that the observed output at FPGA is the same as the one observed using discrete ICs.

Digital Electronics-I Sessional

Page 45 of 83

Experiment: 5

Experiment name: Design a BCD adder that will add two BCD numbers and the

sum will be also in BCD.

Introduction:
Before discussing BCD Adder circuitry first, we can review the basic concepts of BCD no

system and BCD addition technique.

BCD

Binary coded decimal (BCD) is a weighted code that is commonly used in many computers and

calculators to represent decimal numbers. This code takes each decimal digit and represents it by

a four-bit code ranging from 0000 to 1001.

The table illustrates the difference between straight binary and BCD. BCD represents each

decimal digit with a 4-bit code. Notice that the codes 1010 through 1111 are not used in BCD.

BCD Addition

The addition of decimal numbers that are in BCD form can be best understood by considering

the two cases that can occur when two decimal digits are added.

Sum Equals 9 or Less

Consider adding 45 and 33 using BCD to represent each digit:

In the examples above, none of the sums of the pairs of decimal digits exceeded 9; therefore, no

decimal carries were produced. For these cases, the BCD addition process is straightforward and

is actually the same as binary addition.

Digital Electronics-I Sessional

Page 46 of 83

Sum Greater than 9

Consider the addition of 6 and 7 in BCD:

The sum 1101 does not exist in the BCD code; it is one of the six forbidden or invalid four-bit

code groups. This has occurred because the sum of the two digits exceeds 9. Whenever this

occurs, the sum must be corrected by the addition of six (0110) to consider the skipping of the

six invalid code groups:

As shown above, 0110 is added to the invalid sum and produces the correct BCD result. Note

that with the addition of 0110, a carry is produced in the second decimal position. This addition

must be performed whenever the sum of the two decimal digits is greater than 9.

Consider the addition of 59 and 38 in BCD:

Here, the addition of the least significant digits (LSDs) produces a sum of 17 = 10001. This

generates a carry into the next digit position to be added to the codes for 5 and 3. Since 17 7 9, a

correction factor of 6 must be added to the LSD sum. Addition of this correction does not

generate a carry; the carry was already generated in the original addition.

To summarize the BCD addition procedure:

1. Using ordinary binary addition, add the BCD code groups for each digit position.

2. For those positions where the sum is 9 or less, no correction is needed. The sum is in

proper BCD form.

3. When the sum of two digits is greater than 9, a correction of 0110 should be added to that

sum to get the proper BCD result. This case always produces a carry into the next digit

position, either from the original addition (step 1) or from the correction addition.

BCD ADDER

Consider the arithmetic addition of two decimal digits in BCD, together with a possible carry

from a previous stage. Since each input digit does not exceed 9, the output sum cannot be greater

Digital Electronics-I Sessional

Page 47 of 83

than 9 + 9 + 1 = 19, the 1 in the sum being an input carry. Suppose we apply two BCD digits to a

4-bit binary adder. The adder will form the sum in binary and produce a result that may range

from 0 to 19. These binary numbers are listed in Table and are labeled by symbols K, Z4, Z3, Z2,

and Z1. K is the carry, and the subscripts under the letter Z represent the weights 4, 3, 2, and 1

that can be assigned to the four bits in the BCD code. The first column in the table lists the

binary sums as they appear in the outputs of a 4-bit binary adder. The output sum of two decimal

digits must be represented in BCD and should appear in the form listed in the second column of

the table. The problem is to find a simple rule by which the binary number, in the first column

can be converted to the correct BCD-digit representation of the number in the second column. In

examining the contents of the table, it is apparent that when the binary sum is equal to or less

than 1001, the corresponding BCD number is identical, and therefore no conversion is needed.

When the binary sum is greater than 1001, we obtain an invalid BCD representation. The

addition of binary 6 (0110) to the binary sum converts it to the correct BCD representation and

also produces an output carry as required. The logic circuit that detects the necessary correction

can be derived from the table entries. It is obvious that a correction is needed when the binary

sum has an output carry K = 1. The other six combinations from 1010 to 1111 that need a

correction have a 1 in position Z4. To distinguish them from binary 1000 and 1001, which also

have a 1 in position Z4 we specify further that, either Z3 or Z2 must have a 1 along with Z4. The

condition for a correction and an output carry can be expressed by the Boolean function

4 3 4 2C K Z Z Z Z= + +

When C = 1, it is necessary to add 0110 to the binary sum and provide an output carry for the

next stage.

A BCD adder is a circuit that adds two BCD digits in parallel and produces a sum digit also in

BCD. A BCD adder must include the correction logic in its internal construction. To add 0110 to

the binary sum, we use a second 4-bit binary adder, as shown in Figure. The two decimal digits,

together with the input carry, are first added in the top 4-bit binary adder to produce the binary

sum. When the output carry is equal to zero, nothing is added to the binary sum. When it is equal

to one, binary 0110 is added to the binary sum through the bottom 4-bit binary adder. The output

carry generated from the bottom binary adder can be ignored, since it supplies information

already available at the output-carry terminal. The BCD adder can be constructed with three IC

packages.

Caution:
1. Remember to properly identify the pin numbers so that no accidents occur.

2. Properly bias the ICs with appropriate voltages to appropriate pins.

Procedure:
1. Draw the logic diagram to implement the task.

Digital Electronics-I Sessional

Page 48 of 83

2. Select the required ICs.

3. Verify the following truth table for 20output values (0-20).

Figure 5.1: BCD Adder

Digital Electronics-I Sessional

Page 49 of 83

 Binary Sum BCD Sum

Decimal K Z4 C S4

0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0 1

2 0 0 0 1 0 0 0 0 1 0

3 0 0 0 1 1 0 0 0 1 1

4 0 0 1 0 0 0 0 1 0 0

5 0 0 1 0 1 0 0 1 0 1

6 0 0 1 1 0 0 0 1 1 0

7 0 0 1 1 1 0 0 1 1 1

8 0 1 0 0 0 0 1 0 0 0

9 0 1 0 0 1 0 1 0 0 1

10 0 1 0 1 0 1 0 0 0 0

11 0 1 0 1 1 1 0 0 0 1

12 0 1 1 0 0 1 0 0 1 0

13 0 1 1 0 1 1 0 0 1 1

14 0 1 1 1 0 1 0 1 0 0

15 0 1 1 1 1 1 0 1 0 1

16 1 0 0 0 0 1 0 1 1 0

17 1 0 0 0 1 1 0 1 1 1

18 1 0 0 1 0 1 1 0 0 0

19 1 0 0 1 1 1 1 0 0 1

Procedure for FPGA

1. Create a new project and create a new block diagram/schematic file.

2. Compile and simulate the schematic. If everything is ok, assign pins as follows:

INPUT OUTPUT

Signal Switch No. Pin No. Signal LED No. Pin No.

A1 SW4 PIN_AF14 C LEDR4 PIN_AD22

A2 SW5 PIN_AD13 S1 LEDR0 PIN_AE23

A3 SW6 PIN_AC13 S2 LEDR1 PIN_AF23

A4 SW7 PIN_C13 S3 LEDR2 PIN_AB21

B1 SW0 PIN_N25 S4 LEDR3 PIN_AC22

B2 SW1 PIN_N26

 B3 SW2 PIN_P25

B4 SW3 PIN_AE14

Digital Electronics-I Sessional

Page 50 of 83

3. Test the functionality of the designed circuit using switches and LEDs on the FPGA board

for the following table –

A

(Decimal)

A (Binary)
B

(Decimal)

B (Binary) BCD

SUM

(Decimal)

BCD SUM (Binary)

A4 A3 A2 A1 B4 B3 B2 B1 C S4 S3 S2 S1

5 0 1 0 1 0 0 0 0 0 05

7 0 1 1 1 4 0 1 0 0 11

2 0 0 1 0 6 0 1 1 0 08

9 1 0 0 1 8 1 0 0 0 17

1 0 0 0 1 3 0 0 1 1 04

Digital Electronics-I Sessional

Page 51 of 83

Experiment: 6

Experiment name: Introduction to Multiplexers.

Introduction
Multiplexers are the most important attributions of digital circuitry in communication hardware.

These digital switches enable us to achieve the communication network we have today. In this

experiment the students will have to construct MUX (as they call multiplexers) with simple logic

gates and they will implement general logic using 8:1 MUX as the basic constructional unit.

Multiplexer
A modern home stereo system may have a switch that selects music from one of four sources: a

cassette tape, a compact disc (CD), a radio tuner, or an auxiliary input such as audio from a VCR

or DVD. The switch selects one of the electronic signals from one of these four sources and

sends it to the power amplifier and speakers. In simple terms, this is what a multiplexer (MUX)

does: it selects one of several input signals and passes it on to the output.

A digital multiplexer or data selector is a logic circuit that accepts several digital data inputs and

selects one of them at any given time to pass on to the output. The routing of the desired data

input to the output is controlled by SELECT inputs (often referred to as ADDRESS inputs).

Normally, there are 2n input lines and n selection lines whose bit combinations determine which

input is selected.

A 4 to l line multiplexer is shown in Figure. Each of the four input lines, I0 to I3 is applied to one

input of an AND gate. Selection lines S1 and S0 are decoded to select a particular AND gate. The

function table, Figure lists the input-to-output path for each possible bit combination of the

selection lines. To demonstrate the circuit operation, consider the case when S1S0 = 10. The

AND gate associated with input I2 has two of its inputs equal to 1 and the third input connected

to I2. The other three AND gates have at least one input equal to 0, which makes their outputs

equal to 0. The OR gate output is now equal to the value of I2 thus providing a path from the

selected input to the output.

Caution:
1. Remember to properly identify the pin numbers so that no accidents occur.

2. Properly bias the ICs with appropriate voltages to appropriate pins.

Equipment:
1. Trainer Board

2. IC 74151, 7432, 7408, 7404

3. Microprocessor Data handbook.

Job 1:

Implementation of a four to one way Multiplexer, (4:1 MUX) with basic gates.

Procedure:

1. Write the truth table for four to one way MUX.

Digital Electronics-I Sessional

Page 52 of 83

1S 0S Y

2. Write the Boolean function for the output logic.

3. Draw the logic diagram to implement the Boolean function.

4. Select ICs from the equipment list.

5. Observe and note the output logic for all combination of inputs.

Job 2:

Implement the following function using an 8:1 MUX.

 () ()= 15,14,9,8,5,3,1,0,,, DCBAF

If we have a Boolean function of n + 1 variables, we take n of these variables and connect them

to the selection lines of a multiplexer. The remaining single variable of the function is used for

the inputs of the multiplexer. If A is this single variable, the inputs of the multiplexer are chosen

S0

7411

3
6 4

5

7411

9
8 10

11

7404

1

2

I1

7411

1
12 2

13

I3 S1 I2

7432

1

2
3

7411

1
12 2

13

7432

4

5
6

1

2

I0

7432

9

10
8

Figure 6.1: 4 to 1 Multiplexer

Digital Electronics-I Sessional

Page 53 of 83

to be either A or A' or 1 or 0. By judicious use of these four values for the inputs and by

connecting the other variables to the selection lines, one can implement any Boolean function

with a multiplexer. In this way, it is possible to generate any function of n + 1 variables with a 2n

to1 multiplexer.

Fig 6.1. Pin diagram of IC 74151

Procedure:

1. Write the truth table for the above function.

A B C D Y

0 0 0 0 1

0 0 0 1 1

0 0 1 0 0

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 0

0 1 1 1 0

1 0 0 0 1

1 0 0 1 1

1 0 1 0 0

1 0 1 1 0

1 1 0 0 0

1 1 0 1 0

1 1 1 0 1

1 1 1 1 1

Let, B, C, D of the 4 variables (A, B, C, D) are connected to the selection lines of a multiplexer

and remaining single variable A of the function is used for the inputs of the multiplexer

0I 1I 2I 3I 4I 5I 6I 7I

A 1 1 1 1

A 1 1 1 1

 1 1 0 A 0 A A A

Digital Electronics-I Sessional

Page 54 of 83

2. Draw the logic diagram to implement the Boolean function.

3. Select ICs from the equipment list.

4. Observe and note the output logic for all combination of inputs.

Procedure for FPGA:

Design 4:1 MUX

1. Create a new project and create a new block diagram/schematic file.

2. Compile and simulate the schematic. If everything is ok, assign pins as follows:

INPUT OUTPUT

Signal Switch

No.

Pin No. Signal LED No. Pin No.

I0 SW2 PIN_P25 Y LEDR0 PIN_AE23

I1 SW3 PIN_AE14

I2 SW4 PIN_AF14

I3 SW5 PIN_AD13

S0 SW0 PIN_N25

S1 SW1 PIN_N26

3. After assigning pins, the final schematic should look like the following one:

4. Test the functionality of the designed circuit using switches and LEDs on the FPGA board.

Digital Electronics-I Sessional

Page 55 of 83

Implement the following function using an 8:1 MUX

() ()= 15,14,9,8,5,3,1,0,,, DCBAF

1. Create a new project and create a new block diagram/schematic file. After completing the

schematic, it should look like the following:

2. Compile and simulate the schematic. If everything is ok, assign pins as follows:

INPUT OUTPUT

Signal Switch

No.

Pin No. Signal LED No. Pin No.

A SW3 PIN_AE14 Y LEDR0 PIN_AE23

B SW2 PIN_P25

C SW1 PIN_N26

D SW0 PIN_N25

3. After assigning pins, the final schematic should look like the following one:

Digital Electronics-I Sessional

Page 56 of 83

4. Test the functionality of the designed circuit using switches and LEDs on the FPGA board.

Report:
1. Implement a Full Adder using an 8:1 MUX.

2. Repeat 1 using two 4:1 MUX and basic gates.

3. How can you implement a 4:1 MUX using only three 2:1 MUX?

Digital Electronics-I Sessional

Page 57 of 83

Experiment: 7

Experiment name: Implementation of Demultiplexers and Priority Encoders.

Introduction:

Demultiplexer
A Demultiplexer does the opposite function of multiplexers. A demultiplexer is a circuit that

receives information on a single line and transmits this information on one of 2n possible output

lines. The selection of a specific output line is controlled by the bit values of n selection lines.

The output channel can be selected depending on the combination of selection bits.

Priority Encoder
A priority encoder is an encoder circuit that includes the priority function. Priority Encoder

includes the necessary logic to ensure that when two or more inputs are activated, the output

code will correspond to the highest-numbered input. The truth table for a 4 to 2 priority encoder

is given in Table. The X's are don't-care conditions that designate the fact that the binary value

may be equal either to 0 or 1. Input D3 has the highest priority; so regardless of the values of the

other inputs, when this input is 1, the output for xy is 11 (binary 3). D2 has the next priority level.

The output is 10 if D2 = 1 provided that D3 = 0, regardless of the values of the other two lower-

priority inputs. The output for D1 is generated only if higher-priority inputs are 0, and so on

down the priority level. A valid-output indicator, designated by V, is set to 1 only when one or

more of the inputs are equal to 1. If all inputs are 0, V is equal to 0, and the other two outputs of

the circuit are not used.

Truth table of a Priority Encoder

Inputs Outputs

D3 D2 D1 D0 x y V

0 0 0 0 X X 0

0 0 0 1 0 0 1

0 0 1 X 0 1 1

0 1 X X 1 0 1

1 X X X 1 1 1

Caution:
1. Remember to properly identify the pin numbers so that no accidents occur.

2. Properly bias the ICs with appropriate voltages to appropriate pins.

Equipment:
1. Trainer Board

2. IC 7432, 7408, 7404

3. Microprocessor Data handbook.

Job 1:

Implementation of a one to four way Demultiplexer, (1:4 DEMUX) with basic gates.

Digital Electronics-I Sessional

Page 58 of 83

Procedure:

1. Write the truth table for one to four way DEMUX.

1S 0S 0I 1I 2I 3I

2. Write the Boolean function for the output logic.

3. Draw the logic diagram to implement the Boolean function.

4. Select ICs from the equipment list.

5. Observe and note the output logic for all combination of inputs.

S0

7411

3
6 4

5

7411

9
8 10

11

7404

1

2

I0

7411

1
12 2

13

Y

I2

S1

7411

1
12 2

13

I1

I3

1

2

Figure 7.1: Logic diagram of the Demultiplexer

Digital Electronics-I Sessional

Page 59 of 83

Job 2:

Implement a 24 priority encoder with basic gates.

Procedure:

1. Write the truth table for 24 priority encoder.

3D 2D
1D 0D X Y V

2. Write the Boolean function for the output logic.

3. Simplify the Boolean function using K-map.

4. Draw the logic diagram to implement the simplified Boolean function.

7432

12
13

11

Y=D3+D1.D2’ 7408

1
2

3

D1

7432

9
10

8

D2 D3 D0

X=D2+D3

7432

1
2

3

7432

4
5

6

V=D0+D1+D2+D3

7404
1 2

Figure 7.2: Logic diagram of the Priority Encoder

Digital Electronics-I Sessional

Page 60 of 83

5. Select ICs from the equipment list.

6. Observe and note the output logic for all combination of inputs.

Procedure for FPGA:

DEMUX

1. Create a new project and create a new block diagram/schematic file.

2. Compile and simulate the schematic. If everything is ok, assign pins as follows:

INPUT OUTPUT

Signal Switch No. Pin No. Signal LED No. Pin No.

S0 SW0 PIN_N25 I0 LEDR0 PIN_AE23

S1 SW1 PIN_N26 I1 LEDR1 PIN_AF23

Y SW2 PIN_P25 I2 LEDR2 PIN_AB21

 I3 LEDR3 PIN_AC22

3. After assigning pins, the final schematic should look like the following one:

4. Test the functionality of the designed circuit using switches and LEDs on the FPGA

board.

Digital Electronics-I Sessional

Page 61 of 83

Priority Encoder

1. Create a new project and create a new block diagram/schematic file.

2. Compile and simulate the schematic. If everything is ok, assign pins as follows:

INPUT OUTPUT

Signal Switch

No.

Pin No. Signal LED

No.

Pin No.

D0 SW0 PIN_N25 V LEDR0 PIN_AE23

D1 SW1 PIN_N26 Y LEDR1 PIN_AF23

D2 SW2 PIN_P25 X LEDR2 PIN_AB21

D3 SW3 PIN_AE14

3. After assigning pins, the final schematic should look like the following one:

4. Test the functionality of the designed circuit using switches and LEDs on the FPGA

board

Digital Electronics-I Sessional

Page 62 of 83

Experiment: 8

Experiment name: Design of Flip-flop using basic gates.

Caution:
1. Remember to properly identify the pin numbers so that no accidents occur.

2. Properly bias the ICs with appropriate voltages to appropriate pins.

Equipment:
1. Trainer Board

2. IC 7400, 7402, 7432, 7408, 7404

3. Microprocessor Data handbook

Nor Gate Latch

Two cross-coupled NOR gates can be used as a NOR gate latch. The arrangement, is similar to

the NAND latch except that theQ and Qoutputs have reversed positions.

The analysis of the operation of the NOR latch can be performed in exactly the same manner as

for the NAND latch. The results are given in the function table are summarized as follows:

1. SET = RESET = 0. This is the normal resting state for the NOR latch, and it has no effect

on the output state. Q and Qwill remain in whatever state they were in prior to the

occurrence of this input condition.

2. SET = 1, RESET = 0.this will always set Q=1, where it will remain even after SET

returns to 0.

3. RESET = 1. SET = 0, this will always clear Q=0, where it will remain even after RESET

returns to 0.

4. SET = 1, RESET = 1, this condition tries to set and reset the latch at the same time, and it

produces 0==QQ . If the inputs are returned to 0 simultaneously, the resulting output

state is unpredictable. This input condition should not be used.

The NOR gate latch operates exactly like the NAND latch except that the SET and RESET

inputs are active-HIGH rather than active-LOW, and the normal resting state is Q will be set

HIGH by a HIGH pulse on the SET input, and it will be cleared LOW by a HIGH pulse on the

RESET input.

Digital Electronics-I Sessional

Page 63 of 83

Timing Diagram

Logic Diagram

Procedure:
1. Draw the logic diagram to implement SR Flip-flop.

2. Fill up the table with different combination of inputs.

S R Q Q

1 0

0 0

0 1

0 0

1 1

3. Observe the combination for which no change and invalid or race conditions arise.

7402

2

3
1 Q

R

S

7402

5

6
4 Q'

Digital Electronics-I Sessional

Page 64 of 83

NAND Gate Latch

The most basic FF circuit can be constructed from either two NAND gates or two NOR gates.

The NAND gate version, called a NAND gate latch or simply a latch, is shown in Figure 5-3(a).

The two NAND gates are cross-coupled so that the output of NAND-1 is connected to one of the

inputs of NAND-2, and vice versa. The gate outputs, labeled Q andQ , respectively, are the latch

outputs.

1. SET = RESET = 1. This condition is the normal resting state, and it has no effect on the

output state. The Q and Qoutputs will remain in whatever state they were in prior to this

input condition

2. SET = 0, RESET = 1.this will always set Q=1, where it will remain even after RESET

returns to 0.

3. SET = 1. RESET = 0, this will always clear Q=0, where the output will remain even after

RESET returns HIGH. This is called clearing or resetting the latch.

4. SET = 0, RESET = 0, this condition tries to set and reset the latch at the same time, and it

produces 1==QQ . If the inputs are returned to 0 simultaneously, the resulting output

state is unpredictable. This input condition should not be used.

Timing Diagram

Digital Electronics-I Sessional

Page 65 of 83

Logic Diagram

Procedure:
1. Draw the logic diagram to implement SR Flip-flop.

2. Fill up the table with different combination of inputs.

S R Q Q

1 0

0 0

0 1

0 0

1 1

3. Observe the combination for which no change and invalid or race conditions arise.

JK FlipFlop

A JK flip-flop is a refinement of the RS flip-flop in that the indeterminate state of the RS type is

defined in the JK type. Inputs J and K behave like inputs S and R to set and clear the flip-flop,

respectively. The input marked J is for set and the input marked K is for reset. When both inputs

J and K are equal to 1, the flip-flop switches to its complement state, that is, if Q = 1, it switches

to Q = 0, and vice versa.

A JK flip-flop constructed with two cross-coupled NOR gates and two AND gates is shown in

Figure. Output Q is ANDed with K and CP inputs so that the flip-flop is cleared during a clock

pulse only if Q was previously 1. Similarly, output Q' is ANDed with J and CP inputs so that the

flop-flop is set with a clock pulse only when Q' was previously 1. When both J and K are 1, the

input pulse is transmitted through one AND gate only: the one whose input is connected to the

flip-flop output that is presently equal to 1. Thus, if Q = 1, the output of the upper AND gate

becomes 1 upon application of the clock pulse, and the flip-flop is cleared. If Q' = 1, the output

of the lower AND gate becomes 1 and the flip-flop is set. In either case, the output state of the

flip-flop is complemented. The behavior of the JK flip-flop is demonstrated in the characteristic

table.

It is very important to realize that because of the feedback connection in the JK flipflop, a CP

pulse that remains in the 1 state while both J and K are equal to 1 will cause the output to

Digital Electronics-I Sessional

Page 66 of 83

complement again and repeat complementing until the pulse goes back to 0. To avoid this

undesirable operation, the clock pulse must have a time duration that is shorter than the

propagation delay time of the flip-flop. This is a restrictive requirement, since the operation of

the circuit depends on the width of the pulse. For this reason, JK flip-flops are never constructed

as shown in Figure. The restriction on the pulse width can be eliminated with a master-slave or

edge-triggered construction, as discussed in the next section. The same reasoning applies to the T

flip-flop.

Procedure:

1. Draw the logic diagram to implement J-K Flip-flop.

2. Fill up the table with different combination of inputs.

Q J K ()1+tQ

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

3. Observe the combination for which no change and invalid or race conditions arise.

Digital Electronics-I Sessional

Page 67 of 83

D FlipFlop

Design of a D Flip-flop from a J-K Flip-flop.

Procedure:
1. Draw the logic diagram to implement D Flip-flop.

2. Fill up the table with different combination of inputs.

Q D ()1+tQ

0 0

0 1

1 0

1 1

3. Observe the combination for which no change and invalid or race conditions arise.

Digital Electronics-I Sessional

Page 68 of 83

T Flipflop

Design of a T Flip-flop from a J-K Flip-flop.

Procedure:

1. Draw the logic diagram to implement T Flip-flop.

2. Fill up the table with different combination of inputs.

Q T ()1+tQ

0 0

0 1

1 0

1 1

3. Observe the output logic.

Digital Electronics-I Sessional

Page 69 of 83

Procedure for FPGA:

SR Latch

1. Create a new project and create a new block diagram/schematic file
2. Compile and simulate the schematic. If everything is ok, assign pins as follows:

INPUT OUTPUT

Signal
Switch

No.
Pin No. Signal

LED

No.
Pin No.

R SW1 PIN_N26 Q LEDR1 PIN_AF23

S SW0 PIN_N25 Q0 LEDR0 PIN_AE23

3. After assigning pins, the final schematic should look like the following one:

4. Test the functionality of the designed circuit using switches and LEDs on the FPGA

board.

JK Flipflop

1. Create a new project and create a new block diagram/schematic file.

2. Compile and simulate the schematic. If everything is ok, assign pins as follows:

INPUT OUTPUT

Signal Switch No. Pin No. Signal
LED

No.
Pin No.

Clock Pushbutton[0] PIN_G26 Q LEDR0 PIN_AE23

J SW1 PIN_N26

K SW0 PIN_N25

Digital Electronics-I Sessional

Page 70 of 83

3. After assigning pins, the final schematic should look like the following one:

4. Test the functionality of the designed circuit using switches and LEDs on the FPGA

board.

Digital Electronics-I Sessional

Page 71 of 83

ANNEXURE I

Installing USB-Blaster driver software on Windows 7

1. Set the RUN/PROG switch to the RUN position.

2. Connect the supplied USB cable to the USB-Blaster port of the FPGA and to a USB port of

the PC. Also connect the 9V power supply adapter and turn the power switch ON.

At this point you should observe the following:

• All user LEDs are flashing

• All 7-segment displays are cycling through the numbers 0 to F

• The LCD display shows Welcome to the Altera DE2 Board

3. Open Device Manager.

Digital Electronics-I Sessional

Page 72 of 83

4. Note that, USB-Blaster is listed under Other devices. Right click on it and select Update

Driver Software. Update Driver Software –USB-Blaster window will open up.

5. Select Browse my computer for driver software.

6. Find the location of USB-Blaster driver software from the installation directory of Quartus

II. It will be under

<your installation directory>\altera\90sp1\quartus\drivers\usb-blaster

forQuartus II 9.0 sp1 web edition.

Digital Electronics-I Sessional

Page 73 of 83

7. Select Install this software anyway if Windows Security prompt appears.

8. After successful installation, Altera USB-Blaster will appear under Universal Serial Bus

controllers in Device Managerwindow:

Digital Electronics-I Sessional

Page 74 of 83

Digital Electronics-I Sessional

Page 75 of 83

ANNEXURE II

Using the LEDs and Switches
The DE2 board provides four pushbutton switches. Each of these switches is debounced using a

Schmitt Trigger circuit. The four outputs called KEY0, …, KEY3 of the Schmitt Trigger device

are connected directly to the Cyclone II FPGA. Each switch provides a high logic level (3.3

volts) when it is not pressed, and provides a low logic level (0 volts) when depressed. Since the

pushbutton switches are debounced, they are appropriate for use as clock or reset inputs in a

circuit. There are also 18 toggle switches (sliders) on the DE2 board. These switches are not

debounced, and are intended for use as level-sensitive data inputs to a circuit. Each switch is

connected directly to a pin on the Cyclone II FPGA. When a switch is in the DOWN position

(closest to the edge of the board) it provides a low logic level (0 volts) to the FPGA, and when

the switch is in the UP position it provides a high logic level (3.3 volts).

There are 27 user-controllable LEDs on the DE2 board. Eighteen red LEDs are situated above

the 18 toggle switches, and eight green LEDs are found above the pushbutton switches (the 9th

green LED is in the middle of the 7-segment displays). Each LED is driven directly by a pin on

the Cyclone II FPGA; driving its associated pin to a high logic level turns the LED on, and

driving the pin low turns it off.

 Figure1: Schematic diagram of push button and toggle switches

Digital Electronics-I Sessional

Page 76 of 83

 Table1: Pin Assignments for toggle switches

Figure 2: Schematic diagram of LEDs

Digital Electronics-I Sessional

Page 77 of 83

Using the 7-segment Displays
The DE2 Board has eight 7-segment displays. These displays are arranged into two pairs and a

group of four, with the intent of displaying numbers of various sizes. As indicated in the

schematic in Figure 4.6, the seven segments are connected to pins on the Cyclone II FPGA.

Applying a low logic level to a segment causes it to light up, and applying a high logic level

Table 2: Pin Assignments for push button switches

Table 3: Pin Assignments for LEDs

Digital Electronics-I Sessional

Page 78 of 83

turns it off. Each segment in a display is identified by an index from 0 to 6, with the positions

given in Figure 4.7. Note that the dot in each display is unconnected and cannot be used. Table

4.4 shows the assignments of FPGA pins to the 7-segment displays.

Figure 3: Schematic diagram of 7 segment displays

Digital Electronics-I Sessional

Page 79 of 83

Digital Electronics-I Sessional

Page 80 of 83

Table 4: Pin diagram for seven segment displays

Digital Electronics-I Sessional

Page 81 of 83

ANNEXURE III

Complements of a Number
Complements are used in digital computers for simplifying the subtraction operation and for

logical manipulation. There are two types of complements for each base-r system: the radix

complements and the diminished radix complement. The first is referred to as the r's complement

and the second as the (r - 1)'s complement. When the value of the base r is substituted in the

name, the two types are referred to as the 2's complement and l's complement for binary

numbers, and the 10's complement and 9's complement for decimal numbers.

Diminished Radix Complement
Given a number N in base r having n digits, the (r - 1)'s complement of N is defined as (rn - 1) -N.

For decimal numbers, r = 10 and r - 1 = 9, so the 9's complement of N is (10n - 1) - N. Now, 10n

represents a number that consists of a single 1 followed by n 0's. 10n - 1 is a number represented

by n 9's. For example, if n = 4, we have 104 = 10,000 and 104- 1 = 9999. It follows that the 9's

complement of a decimal number is obtained by subtracting each digit from 9. Some numerical

examples follow.

The 9's complement of 546700 is 999999 - 546700 = 453299.

The 9's complement of 012398 is 999999 - 012398 = 987601.

For binary numbers, r = 2 and r - 1 = 1, so the 1's complement of N is (2n - 1) - N. Again, 2n is

represented by a binary number that consists of a 1 followed by n 0’s. 2n - 1 is a binary number

represented by n 1's. For example, if n = 4, we have 24 = (0000), and 24 - I = (1111). Thus the 1's

complement of a binary number is obtained by subtracting each digit from 1. However, when

subtracting binary digits from 1, we can have either 1 - 0 = 1 or 1 - 1 = 0, which causes the bit to

change from 0 to 1 or from 1 to O. Therefore, the 1's complement of a binary number is formed

by changing 1's to 0's and 0's to 1's. The following are some numerical examples. -

The 1's complement of 1011000 is 0100111.

The 1's complement of 0101101 is 1010010.

The (r - 1)'s complement of octal or hexadecimal numbers is obtained by subtracting each digit

from 7 or F (decimal 15), respectively.

Radix Complement
The r's complement of an n-digit number, N in base r is defined as rn –N for N ≠ 0.and 0 for N =

0. Comparing with the (r - 1)'s complement, we note that the r's complement obtained by adding

1 to the (r - 1)'s complement since rn - N =[(rn - 1) – N] + 1. Thus, the 10's complement of

decimal 2389 is 7610 + 1 = 7611and is obtained by adding 1 to the 9's-complement value. The

2's complement of binary 101100 is 010011 + 1 = 010100 and is obtained by adding 1 to the 1's-

complement value.

Since 10n is a number represented by a 1 followed by n 0's, 10n - N, which is the 10's

complement of N, can be formed also by leaving all least significant 0's unchanged, subtracting

the first nonzero least significant digit from 10, and subtracting all higher significant digits from

9.

The 10's complement of 012398 is 987602.

The 10's complement of 246700 is 753300.

Digital Electronics-I Sessional

Page 82 of 83

The 10's complement of the first number is obtained by subtracting 8 from 10 in the least

significant position and subtracting all other digits from 9. The 10's complement of the second

number is obtained by leaving the two least significant 0's unchanged, subtracting 7 from 10, and

subtracting the other three digits from 9.

Similarly, the 2's complement can be formed by leaving all least significant 0's and the first 1

unchanged, and replacing 1's with 0's and 0's with 1's in all other higher significant digits.

The 2's complement of 1101100 is 0010100.

The 2's complement of 0110111 is 1001001.

The 2's complement of the first number is obtained by leaving the two least significant 0's and

the first 1 unchanged, and then replacing 1's with 0's and 0's with 1's with other four most-

significant digits. The 2's complement of the second number is obtained by leaving the least

significant I unchanged and complementing all other digits.

In the previous definitions, it was assumed that the numbers do not have a radix point. If the

original number N contains a radix point, the point should be removed temporarily in order to

form the r's or (r - I)'s complement. The radix point is then restored to the complemented number

in the same relative position. It is also worth mentioning that the complement of the complement

restores the number to its original value. The r's complement of N is r" ~ N. The complement of

the complement is rn -(rn - N) = N, giving back the original number.

Digital Electronics-I Sessional

Page 83 of 83

REFERENCE

1. Digital logic and computer design by M. Morris Mano.

2. Digital fundamentals by Thomas L. Floyd.

3. Fundamentals of Digital Logic with Verilog Design by Stephen

Brown and Zvonko Vranesic.

4. Digital systems principles and applications by Ronald J. Tocci.

	Table of Contents
	Experiment: 1
	Experiment: 2
	Experiment: 3
	Software: Quartus
	Experiment: 4
	Experiment: 5
	Experiment: 6
	Experiment: 7
	Experiment: 8
	ANNEXURE I
	ANNEXURE II
	ANNEXURE III
	REFERENCE

